Clinical Techniques for Prescribing Bioptic Telescope Devices

Henry A. Greene, O.D., F.A.A.O.
Clinical Professor, Department of Ophthalmology
University of North Carolina at Chapel Hill
Vice President, Ocutech, Inc.
Course Description

• Practical, clinical approach to evaluating visually impaired individuals for bioptic telescopes
 – Clinical protocol
 • assessment of an individual’s visual needs
 • determining appropriate patients
 • establishing a prognosis for likely prescription success
 – Methods for fitting and training patients
 – Practice management tips
Challenges of Low Vision Care

• Major optical goal is to magnify the image sufficiently to make it discernable by the patient

• Magnification
 – minimizes the field of view,
 – distorts the image,
 – shortens the working distance,
 – and constrains the depth of field

• All of these work to undermine fluency and increase fatigue.
The activity distance determines the type of management

• Optical magnification requires that the material to be viewed be held at the focal length of the optical system
 – Usually much closer than the habitual working distance of the user

• However, some activities must be performed at distances defined by the activity
 – Cooking, reading music, TV, computers, traffic signals
The activity distance determines the type of management

- The optical device must provide a working distance supportive of the activity
 - magnify the image enough to be able to resolve it
 - telescopic aids
 - focusable or
 - fixed-focus using reading caps
- Move closer
- Bring it closer optically
 - Telescopic aids
Reading is a solitary activity

• Usually the first activity that the patient hopes to improve
• Reading is usually done at home or in isolated situations
• Easiest to support
 – print is high contrast
 – lighting can be controlled
 – devices prescribed are often familiar to most individuals
• Reading is also the most easily replaced through other option
 – radio, books on tape,
 – sighted readers, reading machines
Distance vision is a social activity

• A public activity
 – impacts social interaction
 – hence quality of life.
• Loss of ability to see body language and make eye contact
 – isolating
 – contributes to depression
• Impacts independence and self-worth
• Cannot readily be replaced through other modalities
Refraction
First option to improve distance vision

• First and most convenient option
 – usually a two-line improvement is required for the patient to experience a functional gain

• Brief retinoscopy through the current eyeglasses
 – see how close to neutral the reflex is as well as its quality
 – If the reflex is dull due to media issues, consider therapeutic options that might improve it.
 – No amount of lens power will impact acuity if there are significant media opacities
 – If the patient is post cataract surgery with IOLs, it is unlikely that they will have a significant refractive error

• Trial Frame
Refraction

• Make a sufficient enough power change for the patient to notice (JND)
 – If they can’t notice a half-diopter change, then try one or even two-diopter changes

• High-contrast acuity chart is a poor determiner of functional value
 – Low contrast target such as someone’s face at the furthest distance that they can normally see it
 – If the patient can notice a difference, then it’s likely to be of functional value

• Acuity will fluctuate as fixation varies
 – You won’t get big changes in acuity from small changes in power
Ways to further enhance distance vision

• When refraction is the best you can achieve and acuity remains inadequate for the patient’s goals, than there’s only one option left to further enhance distance vision- make it bigger!

• We have only two ways to do that—
 – walk up close enough to see it
 – bring it closer optically
Low Vision Telescope Optics “101”

- Optical telescopes are available in two designs—
 - Galilean
 - Keplerian

- Each has its distinct characteristics and attributes.
Galilean telescopes

- Small and lightweight
- Simple optical design
- Bright image
- Narrow fields of view
 - (about 5 degrees at 3x)
- Tend not to be sharp edge-to-edge
- Fixed-focus
- Focusable
- 1.7x, 2.2x and 3x powers, but are available as high as 6x.
- Convenient for binocular prescriptions
Keplerian telescopes

- Longer
- Heavier
 - Incorporate prisms to reorient what would otherwise be an upside down and inverted image.
- Fields of view at least twice as large as Galilean telescopes
 - (about 12 degrees at 4x)
- Dimmer and have reduced contrast
- Larger objective lenses produce brighter images
- All commercially available Keplerian telescopes are focusable
 - One autofocus device
- Most frequently prescribed in 3x, 4x and 6x powers, though other powers are also available.
The prescriptive goal

- What are we trying to achieve when we prescribe a telescopic device?
- 20/40?
- >5 degree Field of View?
The patient’s perspective on telescopes

- Everything appears closer
- The value to the patient is that they can see it further away
- A 4x TS will allow a target normally only visible as far as 10 feet away to now be seen as far as 40 feet away
- Not all patients receive a geometric acuity gain from telescopes
Telescopic Options for Low Vision

• Handheld
 – Galilean and Keplerian: 2x to 8x+
 – Magnification greater than 6 or 7x, then handheld monoculars (or even binoculars) become the only compelling option
 – If the telescope would be used only rarely and for episodic activities often a handheld version would be acceptable

• Spectacle clip-on
• Head born self-contained
Head Born Telescopic Options

• Hands are unavailable
• Lack of dexterity
• Extended viewing purposes
• Spectacle mounted designs
 – Full diameter
 • telescope centered in the frame
 – Bioptic
 • positioned above the line of sight so that the user can alternate their view between the carrier lens and the telescope
Telescope Prescribing Protocol

- The Telescope Prescribing Protocol is divided into two parts:
 - **Hard Signs**, those that can be measured or otherwise determined
 - **Soft Signs**, those that are judgments and are developed through patient interaction
Hard Signs

• Visual Acuity:
 – Best corrected visual acuity through conventional lenses is in the 20/70 to 20/300 range

Goal:
 – The patient should be able to read fluently to at least the 20/50 line while looking through the telescope.
 • 20/40 for more demanding activities
 • 20/30 for very demanding activities
Hard Signs

• Contrast sensitivity:
 – Able to see facial features while looking through the telescope at a distance of 12 feet under normal room illumination

Goal:
 – They should see the face much better through the telescope

Negative responses:
 – If they report that the face is larger but NOT easier to see than the prognosis for telescope success is reduced.
 – Consider Galilean devices rather than Keplerian, or handheld Keplerian monoculars with large objective lenses.
• Ocular Dominance:
 – The better seeing eye is the dominant eye, OR, that while looking through the telescope the dominant eye sees better than the fellow eye

Goal:
 – The better seeing eye is the dominant eye.

Negative response:
 – If the better seeing eye is not dominant (there is a “dominancy conflict”), it is often desirable to prescribe a binocular system. Another approach, though less successful, is to occlude the dominant eye while the patient is sighting through the bioptic.
Soft Signs

• **Appropriate activity goals for use of the device**
 – Midrange and beyond activities
 – Have patient tell you what they’d use it for

• **Goal:** The patient has mid-range and beyond visual activity goals.
Soft Signs

• Dexterity with the device

• **Goal:** The patient responds to the device favorably, can find targets while looking through the device, and improves with practice during the evaluation.
Soft Signs

• **Motivation and enthusiasm**

• **Goal:** The patient is excited about how they are seeing with the telescope and embrace the opportunity to improve their vision.
Summary

• In the final determination of an appropriate bioptic prescription, a combination of the hard and soft signs will create an overall prescribing prognosis for the individual patient.

• This systematic approach can be helpful in advising the patient of the likelihood of their successful adaptation to the telescope system.
Rating Suggestion

• Assign a value of 2 points to each of the 6 clinical signs, and assign a rating scale in \(\frac{1}{2} \) point increments.

• A score of 9 or above offers a favorable prognosis.

• Six or below suggests a poor prognosis.
<table>
<thead>
<tr>
<th>Factor</th>
<th>Poor</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA 20/70 to 20/300 with conventional Rx</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>20/50 or better with TS</td>
</tr>
<tr>
<td>Contrast Sensitivity (facial features at 12ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See face much better with TS</td>
</tr>
<tr>
<td>Ocular Dominance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Better seeing eye is dominant</td>
</tr>
<tr>
<td>Appropriate activity goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mid-range and beyond goals</td>
</tr>
<tr>
<td>Dexterity with device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improves with practice during evaluation</td>
</tr>
<tr>
<td>Motivation & Enthusiasm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Excited about how they see with bioptic</td>
</tr>
</tbody>
</table>
Bioptic telescope fitting steps

- Determine the eye that will use the TS
- Align with that eye
- Adjust the bridge so that the bottom of the eyepiece aligns with the top of the pupil
- Adjust the telescope angle of inclination to site straight through the eyepiece when the head is tilted down
- Set the focus
Patient management protocol

• Instruct the individual regarding the impact and value of the device

• Explain the factors that contribute to establishing their likelihood of success
Patient management protocol

• Indoctrinate the patient
 – Explain the impact of low vision on lifestyle
 – Explain characteristics of low vision telescopes
 • Narrow field of view
 • Shallow depth of field
 • Need to focus
 • Need to keep head still

• Evaluate the patient and demonstrate telescopes
 – Show handheld devices first- demonstrate DOF, FOV, and focusing
 – Show spectacle-mounted systems next
 – Provide realistic experiences
 • out of the exam room- show packages on shelves, faces, pictures, TV, flowers, signs, etc.
Patient management protocol

• Qualify the patient
 – Explain hard signs- VA, contrast, dominancy
 – Explain soft signs- goals, dexterity, and response

• Recruit the patient
 – Establish a prognosis- based upon hard and soft signs
 – Discuss the challenges and need for training and practice
Clinical Issues for Prescribing Bioptic Telescopes

• Carrier lenses
 – Order the eyeglass prescription the patient normally wears for distance vision.
 – Prescribe a bifocal if that is what the patient usually wears.
 – We normally use flat-top and round segment designs
 • avoid trifocals and progressives.
Clinical Issues for Prescribing Bioptic Telescopes

- Maintain at least 10mm between the top of the bifocal and the bottom of the eyepiece.

- Eyepiece Corrections:
 - Varies upon the brand of telescope
 - Designs for Vision:
 - all prescriptions
 - Ocutech:
 - sphere power above +/- 12D, or cylinder above 3D
Clinical Issues for Prescribing Bioptic Telescopes

• Illumination Control
 – Slip-behind sun filters are available in a selection of colors
 – Filter caps and internal filters can also be ordered
 – Fitovers (NOIR, etc.)
When should I consider prescribing autofocus?

• Visual activities from 15 feet and closer
• When visual attention will be frequently alternated from near to distance
 – such as from the desk to the blackboard
• When extended near-point activities are required
 – such as playing cards, musical instruments, or using the computer.
Why not consider electronic vision displays?

• Technical challenges have not yet caught up with the dream

• Issues
 – Field of view
 – Stabilization of images
 – Contrast and contour
 – Display brightness
 – Mobility
Telescope Training Techniques

• Give the patient a tour of the device
 Carrier lenses, Telescope eyepiece, Focus knob

• Focusing
 • At distance- take advantage of depth of field
 – Place the focus
 • At near- preset, hand focus, and head focus
Telescope Training Techniques

- **Translation** (switching fixation between the carrier lens and telescope eyepiece)
 - Look first through the regular eyeglass lens (carrier lens) of the bioptic which provides your customary distance vision.
 - Look directly at the object you want to magnify.
 - Drop your head slightly and look up into the eyepiece.
 - You should see a full, round magnified image.
 - You may have to focus it to get the image clear.
 - Practice switching between the carrier lens and the telescope until you can do it easily and without losing your target.
Telescope Training Techniques

Localization at near

- Near objects can be more challenging to find due both to the narrow field of view and the visual mismatch.
- First find the object in the telescope field of view,
 - while looking at it, pass your upraised finger across the field of view several inches in front of the target.
 - Once you can see both your finger and the target at the same time, watch your finger as it moves in to touch the target.
- You MUST watch your finger while looking through the telescope to learn to do this.
- A convenient technique:
 - Try to touch the buttons on a telephone keypad.
 - Disconnect the phone first!
Telescope Training Techniques

• Have the patient put it on, take it off, and put the bioptic away themselves
 – Place level on the face
 – Temples flat across the ears
• Discuss proper care and cleaning
• The eyepiece is apt to get soiled and filmy
 – Clean with an approved microfiber cloth
• The device should never be placed under a faucet!
Trouble shooting bioptic systems

The patient does not see a full field

– Check to see that the telescope is properly aligned and inclined for the patient
– Review the eyepiece position fitting method
– Adjust the bridge and temples to reposition the aid for the proper line of sight
Trouble shooting bioptic systems

The image is not clear

- Check to see that the telescope is properly focused
- The eyepiece and front lenses are clean
- There is not significant refractive error that might preclude clear vision through the telescope.
- Check that the patient is using the appropriate eye to sight through the telescope
- Make sure there isn’t a dominancy conflict that undermines the functionality of the device
Trouble shooting bioptic systems

The patient complains that the field of view is small
• Check to see if shortening the vertex distance is possible by adjusting the bridge
• Also explain that all telescopes have a narrow field of view, but that patients usually will adapt over time

The patient complains that they have to drop their head too much to see through the telescope
• Check to see that the frame is as low as possible on the bridge
• Check that the angle of inclination of the telescope is as low as possible
Trouble shooting bioptic systems

The patient sees two images:

• **Monocularly**: If the diplopia occurs when only the eye using the telescope is open, readjust the telescope position to eliminate the second image

• **Binocularly**: If the diplopia occurs only when both eyes are open, consider:
 – The patient is unable to suppress the eye not using the telescope.
 – The non-dominant eye was prescribed the telescope
 – One option is a sector occluder across the top of the carrier lens for the non-telescope eye
 – Another option is to prescribe a binocular system
Trouble shooting bioptic systems

The image through the telescope is too dim.

• Recheck the eyepiece position
 – Slight misalignment can significantly decrease image brightness
 – Shine a penlight into the front of the TS to determine the eyepiece position on the pupil

• If this is still not adequate, check that the front and back lenses are clean and free of grease and oil

• Check also that the internal optics are not fogged by holding the telescope to a light and looking through it backwards (through the objective lens)
Dr. Greene’s Pearls

- If the patient has reasonably good acuity (20/80 or better), I’m considering 2.2x and 3x Galilean, or 2.75x and 3.0x Keplerian devices (if field of view is a concern)

- If acuity is similar between the eyes or if I’m concerned about dominancy issues, I’ll consider the same powers in a binocular design

- If contrast is an issue, I’m thinking about Galilean designs first

- If acuity is between 20/100 and 20/300 I’m thinking 4x and 6x Keplerian designs, especially if there will be near point applications and I want them to be able to focus

- If acuity is worse than 20/400, I’m thinking 8x and higher handheld monoculars or hi-power (7x) head born devices